Chemical structures, LCR modeling elements,

A

	14–17
Acceptable separation valve set, 342, 369	Chlorine, removal from refrigerants, 298-299
generating, flowsheet modifications,	Chloropropane, interactive design, 292
369–371	Classification decision trees, inductive
Advanced System for Computations in	construction, 392–394
Engineering Design, 7–8	Computational model, design principles, 117–122
Alanine, synthesis, algorithm application,	constraint propagation, 118–119
181–182	context-based design, 122
Ammonia, synthesis, application of algorithm	hierarchical planning, 118
for construction of direct mechanisms,	specification refinement into
161–166	implementations, 118
Aniline	unified transformational design, 120–122
production, reaction-based hazard	ConceptDesigner, 139–144
identification, 217–221	architecture, 139–144
reaction path to, 220	design plan module, 140–141
Artificial intelligence, 437–438	implementation, 143–144
Aspiration levels, identification and refinement,	modeling objects module, 142
411	user interface module, 142–143
Axiomatic theory of design, 95	
Axiomatic theory of design, 33	Conceptual process designs, 93–145; see also HDL
	automation issues, 98-103
В	benefits of mechanized models, 100
	CAD drawbacks, 99
Branch-and-bound algorithm	designer, 101
relative efficiency, 564-566	designer, 101 high-level, design-oriented languages,
relative efficiency, 564–566 specification, 563–564	designer, 101 high-level, design-oriented languages, 101-102
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563	designer, 101 high-level, design-oriented languages, 101-102 human-computer interface, 103
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563	designer, 101 high-level, design-oriented languages, 101-102 human-computer interface, 103 object-oriented representation, 102-103 planner, 100-101
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559	designer, 101 high-level, design-oriented languages, 101-102 human-computer interface, 103 object-oriented representation, 102-103 planner, 100-101 scheduler, 101
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563	designer, 101 high-level, design-oriented languages, 101-102 human-computer interface, 103 object-oriented representation, 102-103 planner, 100-101
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559	designer, 101 high-level, design-oriented languages, 101-102 human-computer interface, 103 object-oriented representation, 102-103 planner, 100-101 scheduler, 101
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559	designer, 101 high-level, design-oriented languages, 101-102 human-computer interface, 103 object-oriented representation, 102-103 planner, 100-101 scheduler, 101 ConceptDesigner, 139-144
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559 lower-bound function, 559–561	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103 planner, 100–101 scheduler, 101 ConceptDesigner, 139–144 generic design process, 104
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559 lower-bound function, 559–561 Branching, as state updating, 566–568	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103 planner, 100–101 scheduler, 101 ConceptDesigner, 139–144 generic design process, 104 hierarchical approach, 103–122 computational model, 117–122 goal structures and transformational model,
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559 lower-bound function, 559–561	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103 planner, 100–101 scheduler, 101 ConceptDesigner, 139–144 generic design process, 104 hierarchical approach, 103–122 computational model, 117–122 goal structures and transformational model, 107–117
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559 lower-bound function, 559–561 Branching, as state updating, 566–568	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103 planner, 100–101 scheduler, 101 ConceptDesigner, 139–144 generic design process, 104 hierarchical approach, 103–122 computational model, 117–122 goal structures and transformational model, 107–117 intermediate milestones, 105–106
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559 lower-bound function, 559–561 Branching, as state updating, 566–568 C Chebyshev approximation problem, 467–468	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103 planner, 100–101 scheduler, 101 ConceptDesigner, 139–144 generic design process, 104 hierarchical approach, 103–122 computational model, 117–122 goal structures and transformational model, 107–117
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559 lower-bound function, 559–561 Branching, as state updating, 566–568	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103 planner, 100–101 scheduler, 101 ConceptDesigner, 139–144 generic design process, 104 hierarchical approach, 103–122 computational model, 117–122 goal structures and transformational model, 107–117 intermediate milestones, 105–106
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559 lower-bound function, 559–561 Branching, as state updating, 566–568 C Chebyshev approximation problem, 467–468	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103 planner, 100–101 scheduler, 101 ConceptDesigner, 139–144 generic design process, 104 hierarchical approach, 103–122 computational model, 117–122 goal structures and transformational model, 107–117 intermediate milestones, 105–106 planning of process design evolution, 104–107 previous approaches and limitations, 97–98
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559 lower-bound function, 559–561 Branching, as state updating, 566–568 C Chebyshev approximation problem, 467–468 Chemical plants, purging from offending	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103 planner, 100–101 scheduler, 101 ConceptDesigner, 139–144 generic design process, 104 hierarchical approach, 103–122 computational model, 117–122 goal structures and transformational model, 107–117 intermediate milestones, 105–106 planning of process design evolution, 104–107
relative efficiency, 564–566 specification, 563–564 Branch-and-bound strategy, 557–563 dominance test, 561–562 equivalence test, 562–563 flowshop problem, 559 formal statement of branching, 558–559 lower-bound function, 559–561 Branching, as state updating, 566–568 C Chebyshev approximation problem, 467–468 Chemical plants, purging from offending chemicals, 342–343	designer, 101 high-level, design-oriented languages, 101–102 human-computer interface, 103 object-oriented representation, 102–103 planner, 100–101 scheduler, 101 ConceptDesigner, 139–144 generic design process, 104 hierarchical approach, 103–122 computational model, 117–122 goal structures and transformational model, 107–117 intermediate milestones, 105–106 planning of process design evolution, 104–107 previous approaches and limitations, 97–98

F

Failure handling, object-oriented, 138

Fault-tree, construction, 238-241

D	Feature extraction, data compression, 530 First intractability theorem, 337
Decision making supervisory central layer	Flowshop problem, 552–535
Decision making, supervisory control layer, 381–382	branch-and-bound strategy, 559
Decision trees, inductive learning through,	example, 570–573
541–543	lower-bound function, 568–570
Decision unit, 419–420	solution methodology, 553–555
Deductive reasoning, identification of reaction-	specific explanation structure, 599–601
based hazards, 221–253	Functional estimation problem, 441–451
constraints, 223–224	approximation properties, 449–450
fault-tree construction, 238–241	decisions involved in, 445–448
	error bounds, 450–451
input variables, 225–226	
level-1-gate, 238–239	expected risk functional, 444–445
methodological framework, 222-224	generalization
preventive mechanism assessment, 235-238	error, sources, 448
reaction quench, 241-253	versus generality tradeoff, 447
recursive tracing of variable-influence links,	ill-posed, 442
223–224	inductiveness, 442
technology type, 233-235	learning algorithm, 465–471
top-level events, 235-237	derivation of model, 467–468
unforeseen disturbances, 235–236	error bound derivation, 409-471
variable-influence diagram construction, 227-232	structural adaptation algorithm variations, 468-469
variable-influence pathway characterization,	learning problem, formulation, 451-465
232–235	algorithm derivation, 453-454
variables as causes or effects, 225-227	error threshold selection, 457-459
Design errors, 189	expected risk functional convergence,
Dilation parameter, discretized, 512	459–461
Discrete decision process, 555–557, 595	functional space representation, 462-465
Domain theory, 596	function space selection, 454–457
Dominance test, 561–562	localization in space and frequency, 455
Drug design, interactive, 301–304	multiresolution analysis, 462–464
Dyadic wavelet transform, 512	multiresolution decomposition of input space, 455–457
	problem statement, 452-453
_	wavelet properties, 464-465
E	mathematical description, 444-448
	neural network solution, 449-451
Electrical resistivity, polymer packaging	overfitting, 447
materials, 287	radial basis function networks, 451-452
Engineering design, 94–95	regression function, 480-481
Engineering science of knowledge-based design, 95-96	smoothness of approximating curve, 442-443
Equivalence test, 562-563	
Ethane, pyrolysis, LCR modeling, 64-72	
Excitation, persistency, 446	G
	ŭ.

Generalization algorithm, 605 Generalization error, sources, 448 Generate-and-test paradigm, 267–270 combinatorial explosion, 269–270 design constraints, 268–270

Glass transition temperature, polymer packaging materials, 287 Group contributions, additivity, 291–292 Group vectors, 292 H	Hierarchical Design Language; see HDL Horn clauses, in branching structure analysis, 586–588 synthesis, 585–586 Human-computer interface, 103 Human-machine interaction, 134–138 Hybrid phenomena theory, 9–10
п	Trybrid phenomena meory, 9–10
Hazard analysis incompleteness of methodologies, 192–193 predictive, 190–192	I
proposed methodology, 194–195 traditional approaches, premises, 193–194 Hazards	Inductive learning, through decision trees, 541-543 Inductive reasoning, identification of reaction-
appearance when transferring process from laboratory to commercial scale, 188–189 identification, 189–190	based hazards, 209–221 algorithm, 211–214 aniline production, 217–221 identification of root causes, 214–217
algorithm, inductive, 211–214 equipment-based methodologies, 214–215 methods, 190–191	methodology, 210–212 properties, 214–217 Inflexion points, detection, 518–519
modeling language role, 198–205 reaction-based, 195–209; see also Deductive reasoning; Inductive reasoning	Influence graphs, construction, 340–341 Interval arithmetic, metacontributions and, 273–275
mapping of equipment into thermodynamic state space, 204–205	K
204-203	
MODEL.LA, 200–204 system foundations, 196–198 preventive mechanisms, assessment,	Kraft pulp plant bottom-up approach, 428–430 decision variables, 427 final decision policy comparison, 430, 431
system foundations, 196–198 preventive mechanisms, assessment, 235–238 HDL, 122–139; see also ConceptDesigner design alternative, management, 138–139 design tasks, semantic relationships,	bottom-up approach, 428-430
system foundations, 196–198 preventive mechanisms, assessment, 235–238 HDL, 122–139; see also ConceptDesigner design alternative, management, 138–139 design tasks, semantic relationships, 132–134 human-machine interaction, 134–138 modeling design tasks, 129–134	bottom-up approach, 428–430 decision variables, 427 final decision policy comparison, 430–431 operational analysis, 426–431 overview, 418
system foundations, 196–198 preventive mechanisms, assessment, 235–238 HDL, 122–139; see also ConceptDesigner design alternative, management, 138–139 design tasks, semantic relationships, 132–134 human-machine interaction, 134–138	bottom-up approach, 428–430 decision variables, 427 final decision policy comparison, 430–431 operational analysis, 426–431 overview, 418 top-down approach, 428
system foundations, 196–198 preventive mechanisms, assessment, 235–238 HDL, 122–139; see also ConceptDesigner design alternative, management, 138–139 design tasks, semantic relationships, 132–134 human-machine interaction, 134–138 modeling design tasks, 129–134 modeling elements, 123–127 Compound, 126 Flowsheet, 125–126 Generic Unit, 124 Generic Variable, 126 Port, 125 Project, 126	bottom-up approach, 428–430 decision variables, 427 final decision policy comparison, 430–431 operational analysis, 426–431 overview, 418 top-down approach, 428 L Laminar mechanisms, 154 Language for Chemical Reasoning; see LCR LCR, 13–35, 199 assumptions, 58 case study, ethane pyrolysis, 64–72 initialization, 65–67
system foundations, 196–198 preventive mechanisms, assessment, 235–238 HDL, 122–139; see also ConceptDesigner design alternative, management, 138–139 design tasks, semantic relationships, 132–134 human-machine interaction, 134–138 modeling design tasks, 129–134 modeling elements, 123–127 Compound, 126 Flowsheet, 125–126 Generic Unit, 124 Generic Variable, 126 Port, 125	bottom-up approach, 428–430 decision variables, 427 final decision policy comparison, 430–431 operational analysis, 426–431 overview, 418 top-down approach, 428 L Laminar mechanisms, 154 Language for Chemical Reasoning; see LCR LCR, 13–35, 199 assumptions, 58 case study, ethane pyrolysis, 64–72

LCR (Continued)	complex systems with internal etracture
infeasible species, generation, 206–207	complex systems with internal structure, 417-431
model class decomposition digraph, 50–53	bottom-up approach, 424–425
modeling elements, 13–26	conventional and alternative problem
ab-initio operator, 19, 24–25	definitions, 420–423
atom, 14–16	final problem statement, 423
bond, 15–16	as networks of interconnected subsystems,
chemical behavior, 18–19, 22–24	419–420
chemical structures, defining, 14–17	problem statement, 417–423
composite-operator, 19–20, 25–26	pulp plant operational analysis, 426–431
context, 21	search procedures, 424–426
quantitative relationships, description, 21	top-down approach, 425–426
reaction-environment, 19	continuous performance metrics, 396–408
reactions and pathways, 20–21	alternative problem statements and
reactive behavior of chemicals, defining,	solutions, 398–401
17–20	methodology and search procedures,
subclasses, 21–26	403-405
modeling object	problem statement, 396–398
atom-bond-configuration, 15–17, 22, 207,	pulp digester, 405–408
209	Taguchi loss functions as continuous
pathway, 207, 209	quality cost models, 401–403
modeling object extension, 36-50	data available on routine basis, 382–383
ab-initio-operator hierarchical tree, 42-46	empirical; see Neural networks
atom-bond-configuration hierarchical tree,	explanation-based, 594–598
36-39	domain theory, 596
chemical behavior hierarchical tree, 39-42	explanation
composite-operator hierarchical tree,	construction, 598–601
47–50	generalization, 601-607
reaction pathways, generation and	with original bindings, 601-602
representation, 53-58	with unified bindings, 604-605
semantic relations among modeling elements,	with uniquized bindings, 603, 605
26–33	operationality criterion, 597-598
aggregation/disaggregation, 30-31	proof structure generalizations, 606-607
commutativity, 32	specific explanation, 599-601
entity-attribute, 27	target concept definition, 595-596
merging, 32-33	training example, 596
properties, 31–33	variable generalization, 601-606
specialization, 27-28	framework to describe procedures,
specification, 28-30	384-388
transitivity, 32	departures from previous approaches,
syntax, 33–35	385-388
Learning, 377-432, 438; see also Functional	generic formalism, 385
estimation problem	hyperrectangles as solution format, 386
with categorical performance metrics,	interval analysis nomenclature, 386-387
389–396	inductive through decision trees, 541-543
classification decision trees, 392-394	plants lacking credible first-principles
classification techniques, 390	models, 382
methodology, 391	primary goal of approaches, 380
operating strategies for octane number,	problem definition flexibility, 383
394–396	problem statement, 381
problem statement, 389–391	prototypical application examples,
search procedure, 391-396	383-384

supervisory control layer of decisionmaking,	requirements, 13
381-382	role in hazards identification, 198-205
systems with multiple operational objectives,	Modeling systems
408–416	ASCEND, 7–8
aspiration level identification and	in chemistry, 10-13
refinement, 411	critique of, 10
categorical performance variables,	hybrid phenomena theory, 9-10
409-413	MODASS, 8–9
continuous performance variables, 409	OMOLA, 8
operational analysis of plasma etching	premises, 3-6
unit, 413-416	automatic generation and modification of
problem definition, 411	models, 5–6
Learning algorithm, 465-471	declarative knowledge articulation,
applications, 471-479	3–4
two-dimensional function	hierarchical and multiview representation
with distinguished localized features,	of entities, 4–5
477–479	separation of declarative and procedural
estimation, 471-474	knowledge, 4
reaction and flowrate of heat transfer fluid	simulation and reasoning, 6
in continuous-stirred-tank reactor,	process simulation, 7-10
474–477	MODEL.LA, 73-78, 199
derivation of	computer-aided implementation, 87-89
error bound, 409-471	Generic-Variable, 331-332
model, 467-468	hazards identification, reaction-based,
structural adaptation algorithm variations,	200-204
468-469	hierarchies of modeling subclasses, 76-78
Learning scheme, 452	modeling elements, 73-75, 329
Lysine, synthesis, algorithm application,	Modeling-Scope, 332
182–183	modeling object attributes, 202-204
	phenomena-based modeling of processing
	systems, 78–89
M	chemical engineering science
	hierarchies of modeling elements,
Management of operational quality, 379	79–83
MCDD, 50-53	formal construction, 82, 845
Metacontribution, 272-274	multifaceted modeling, 82, 84, 86-87
interval arithmetic and, 273-275	semantic relationships, 75-76
Metagroups, 271-272	syntax, 78
Methanol, synthesis, application of algorithm	Model truth criterion, 336–337
for construction of direct mechanisms,	Molecular abstractions
163-173	formation strategies, 278-279
Modal truth criterion, for quantitative	successive, searching through, 275–278
constraints, 344-345	Molecular stoichiometry, 174
MODASS, 8-9	Molecule, design, 257-308
Model class decomposition digraph, 50-53	automatic synthesis, 267-290
Modeling, 438	generate-and-test paradigm, 267-270
computer-aided, 2–3	polymers as packaging materials, 284,
MODeling ASSistant, 8–9	286–290
Modeling languages, 1-89; see also HDL;	refrigerant design, 283–285
LCR; MODEL.LA	search algorithm, 271–283
domain-specific, 11	desired chemical, 262–264
MODEL.LA, 73-78	final evaluation, 266–267

Molecule, design (Continued)	object-oriented description, 352, 354
general framework, 264-267	operating state definition, 353, 356–357
interactive synthesis, 290-304	features, 335-336
extraction solvents, 299–301	handling constraints
illustration, 291–296	on mixing of chemicals, 339-343
pharmaceuticals, 301-304	quantitative, 343–348
refrigerants, 296–299	on temporal ordering of operational goals,
search space dimensionality reduction,	337–339
293-294	identification of clobberers of quantitative
utilization, 295–296	constraints, 345-347
Molecule-Designer, 304-307	influence graphs, construction, 340-341
optimization formulations, 259	operator models and complexity, 336-337
physical properties, estimation, 260-262	plan modification operation selection,
previous work, 260-264	347-348
problem formulation, 264	procedure, 334-335
procedure, 265	purging plant from offending chemicals,
representation and enumeration of	342–343
molecules, 265-266	switchover procedure, 359-368
screening of molecules, 266	abstraction of operators, 362-363
selection of desired chemicals, 262	constraints, 360
target transformation, 264-265	constraints-2 and -3 transformation, 366
Molecule-Designer, 304-307	constraint-4 transformation, 366-367
description, 304-305	initial and goal states, 361-362
group-contribution section, 305	mixing constraint transformation, 363-365
interactive design section, 306	operating situation requiring, 359-360
molecule evaluation, 307	purge/evacuation procedure generation,
problem formulation section, 305	364–366
target transformation section, 305-307	synthesis, 367–368
	synthesis of operating procedures,
	348-351
N	plan synthesis, 350–351
	problem formulation, 349–350
Neural networks, 437–482; see also Functional	truth criterion, quantitative constraints,
estimation problem	344-345
applications in process control, 439	Numerical computing, intelligent, 549–608
as nonlinear regression techniques, 439	ancestral equality, 574-575
universal approximation property, 439	branch-and-bound framework, 555-570
Nodes, 200	branch as state updating, 566-568
terminal, 211–212	brand-and-bound algorithm
Nonmonotonic planning, 323, 334–351	relative efficiency, 564–566
algorithm for downward propagation of	specification, 563-564
temporal constraints, 338-339	brand-and-bound strategy, 557-563
constraint generation on temporal ordering	discrete decision process, 555–557
of primitive operations, 341-342	flowshop lower-bounding scheme,
Constraint Transformation Algorithm, 339	568–570
constraint violation identification, 341	definition, 551
construction of hierarchical models and	discrete decision processes, 595
definition of operating states, 351–358	explanation-based learning; see Learning,
goal state definition, 358	explanation-based
initial state	flowshop problem, 552–535
completeness, 356–357	example, 570–573
consistency, 356-357	solution methodology, 553-555

identification of control information,	ASVS generation, flowsheet modifications,
551–552	369–371
problem-solving experience	case studies, 372-374
definition and analysis, 573-578	purge source and route flowsheet
logical analysis, 578-579	modifications, 371-372
representation, 581-593	set of constraints, 315-316
horn clauses, in branching structure	state transition networks, 317
analysis, 586-588	Operationality criterion, 597-598
synthesis, 585-586	Organic synthesis, computer-aided, 11-12
predicates for problem analysis, 589, 591	Oxygen, permeability, polymer packaging
for problem analysis, 588-593	materials, 287, 290
for problem solving, 583–588	
sufficient theory expression, 591-593	
successive filtering of branching structure, 573	P
sufficient theories for state-space formulation,	Performance metrics
579–581	categorical, 389-396
	systems with multiple operational
_	objectives, 409–410
0	continuous, 396–408
011 - 1 - 12/01/11 - 14	systems with multiple operational
Object-oriented MOdeling LAnguage, 8	objectives, 409
Object-oriented programming, conceptual	Pharmaceuticals, interactive design, 301–304
process designs, 102–103 Occam's razor, 442	Physical properties estimation, 260–262
Octane number, operating strategies for,	•
394–396	impact on economics of processes, 258–259 Plasma etching unit, operational analysis,
OMOLA, 8	413–416
Operating procedures, 313–375; see also	categorical performance variables, 415
Nonmonotonic planning	continuous performance variables, 415–416
branch-and-bound paradigm, 323	system characterization, 413-415
domain-dependent planning theory, 316	Polymers, as packaging materials, automatic
domain-independent planning theory, 316	design, 284, 286-290
hierarchical modeling, 324-334	constraints, 286
conditional operators, 327	electrical resistivity, 287
functional operators, 327	glass transition temperature, 287
maintaining consistency among	oxygen permeability, 287, 290
descriptions, 332, 334	physical properties, 286
operating state description, 330–333	thermal conductivity, 287
operations, 325–329	Process data, compression, 493-494
process behavior, 329–334	Process trends, 485–546; see also Wavelet
process topology description, 329–330	decomposition
STRIPS-operator, 325–326	ad hoc treatment, 490–492
nonmonotonic planning, 323 planning methodology components,	compression of process data, 493–494
318–324	content, 488–490 data compression, 527–535
constraint character, 321–322	example, 532–535
problem statement, 319–321	inaccuracies due to end effects, 531
search procedures, 322–324	in real time, 530–531
previous approaches to synthesis, 316–318	selecting mother wavelet and compression
revamping process designs to ensure	criteria, 531–532
feasibility, 368–374	through feature extraction, 530
· ·	

Process trends (Continued)	structural incidence matrix, 242-243
through orthonormal wavelets, 527-529	system boundary, 243-244
formal representation, 495-507	technology types, 247–249
episodes, 498–499	topological fault tree, 249-251
from quantitative to qualitative, 496-498	variable-influence diagram, 245-247
scale space filtering, 500-507	Reactive behavior, chemicals, LCR modeling
second-order zero crossings, 505-506	elements, 17-20
structure of scale, 503-505	Reasoning; see also Deductive reasoning;
triangular episode, 499–500	Inductive reasoning
generalization, 525-526	models, 6
generating multiscale descriptions, 523-525	in time; see Process trends
hierarchy of process operational tasks, 490	Refrigerants
multiscale representation, 500-502	automatic design, 283-285
representation, 491-492	interactive design, 296-299
temporal pattern recognition, 492-493,	Regression, 438
535-545	function, 480–481
generating generalized descriptions, 538-540	
	S
inductive learning through decision trees, 541–543	3
learning input-output mappings, 537	Scale space filtering
pattern matching of multiscale descriptions,	process trends, 500-507
540	properties, 506-507
pattern recognition with single input	Scale-up, 189
variable, 543-545	Search algorithm, 271-283
qualitatively equivalent patterns, 538	evaluation, 279-283
Pulp digester, continuous performance metrics	interval arithmetic and metacontributions,
applications, 405-408	273–275
	metagroups, 271–272
Q	metamolecule evaluation, 272-273
V	searching through successive molecular
Quality cost models. Tagushi loss functions	abstractions, 275-278
Quality cost models, Taguchi loss functions, 401-403	molecular abstraction formulation
	strategies, 278-279
Quality loss coefficient, 402	Second intractability theorem, 337
Quantitative reasoning; see Symbolic and	Sodium chromoglycate, 302
quantitative reasoning	Solvents, extraction, interactive design,
	299–301
R	Streams, 200
	STRIPS-Operator, 325-329
Radial basis function networks, 451-452	Structural adaptation algorithm, variations,
Reaction pathways; see also Symbolic and	468-469
quantitative reasoning	Structural incidence matrix, 227-230
hierarchical structure, 148-149	reactor-quench example, 242-243
synthesis, 149-150	Structural minimization, 454
Reaction quench, reaction-based hazard	Sufficient theory
identification, 241-253	expression, 591–593
breaking cause-and-effect relationship loop,	state-space formulation, 579–581
245	Symbolic and quantitative reasoning, 147–185
elements, 241	application domains, 150
fault tree implementation, 252-253	biochemical pathways, 169, 173–183
root cause diagram construction, 247–248	active set update, 178
J	······································

alanine synthesis, 181-182	Thermodynamical entropy, 529
algorithm, 176-179	Thermodynamic states, reaction generation,
computation efficiency, 179–180	205–209
constraint formulation, 175–176	Time
initialization and reaction processing, 177	dyadic discretization, 513-514
intermediate metabolite elimination, 178	uniform discretization, 514-515
lysine synthesis, 182–183	Top-down induction of decision trees, 393
number of combinations for intermediates,	Transformational model, 107-117
177	general separation structure, 113–116
pathway processing, 179	initialize project definition, 108–109
synthesis problem features, 173–175	input-output structure design, 110-111
catalytic reaction systems, 151–169	liquid separation subsystem, 116–117
active set update, 159 algorithm features, 159-160	plant complex structure specification, 109-110
algorithm structure, 155–169	
ammonia synthesis, 161–166	recycle structure design, 112–113 Truth criterion
direct mechanisms, 153–154	of complete plans, 336
initialization, 156	quantitative constraints, 344–345
intermediate and terminal species,	TWEAK, 368
151–152	- /- - - / / / / / /
intermediate elimination and selection,	
158-159	U
methanol synthesis, 163-173	
number of combinations for intermediates,	Unification algorithm, 598
157–158	
overall mechanisms, 152–153	
previous work on mechanism	V
construction, 154-155	
construction, 154-155 reaction directionality importance,	Variable-influence diagrams, construction,
construction, 154–155 reaction directionality importance, 166–167, 174	Variable-influence diagrams, construction, 227–232
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151	Variable-influence diagrams, construction, 227-232 Variable-influence pathways, characterization,
construction, 154–155 reaction directionality importance, 166–167, 174	Variable-influence diagrams, construction, 227–232
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185	Variable-influence diagrams, construction, 227-232 Variable-influence pathways, characterization,
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151	Variable-influence diagrams, construction, 227-232 Variable-influence pathways, characterization,
construction, 154-155 reaction directionality importance, 166-167, 174 interpretation of pathway design, 150-151 synthesis algorithm extensions, 183-185	Variable-influence diagrams, construction, 227-232 Variable-influence pathways, characterization, 232-235
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545	Variable-influence diagrams, construction, 227-232 Variable-influence pathways, characterization, 232-235 W Watson relation, 274 Wavelet dyadic transform, 512
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545 generating generalized descriptions,	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519 mother, selection, 531–532
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545 generating generalized descriptions, 538–540	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519 mother, selection, 531–532 orthonormal data compression through, 527–529 properties, 464–465
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545 generating generalized descriptions, 538–540 inductive learning through decision trees, 541–543 learning input–output mappings, 537	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519 mother, selection, 531–532 orthonormal data compression through, 527–529 properties, 464–465 Wavelet decomposition, 507–526
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545 generating generalized descriptions, 538–540 inductive learning through decision trees, 541–543 learning input–output mappings, 537 pattern matching of multiscale descriptions,	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519 mother, selection, 531–532 orthonormal data compression through, 527–529 properties, 464–465 Wavelet decomposition, 507–526 extraction of multiscale temporal trends,
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545 generating generalized descriptions, 538–540 inductive learning through decision trees, 541–543 learning input–output mappings, 537 pattern matching of multiscale descriptions, 540	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519 mother, selection, 531–532 orthonormal data compression through, 527–529 properties, 464–465 Wavelet decomposition, 507–526 extraction of multiscale temporal trends, 516–526
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545 generating generalized descriptions, 538–540 inductive learning through decision trees, 541–543 learning input–output mappings, 537 pattern matching of multiscale descriptions, 540 pattern recognition with single input	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519 mother, selection, 531–532 orthonormal data compression through, 527–529 properties, 464–465 Wavelet decomposition, 507–526 extraction of multiscale temporal trends, 516–526 algorithm for extraction of trends,
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545 generating generalized descriptions, 538–540 inductive learning through decision trees, 541–543 learning input–output mappings, 537 pattern matching of multiscale descriptions, 540 pattern recognition with single input variable, 543–545	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519 mother, selection, 531–532 orthonormal data compression through, 527–529 properties, 464–465 Wavelet decomposition, 507–526 extraction of multiscale temporal trends, 516–526 algorithm for extraction of trends, 521–523
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545 generating generalized descriptions, 538–540 inductive learning through decision trees, 541–543 learning input–output mappings, 537 pattern matching of multiscale descriptions, 540 pattern recognition with single input variable, 543–545 qualitatively equivalent patterns, 538	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519 mother, selection, 531–532 orthonormal data compression through, 527–529 properties, 464–465 Wavelet decomposition, 507–526 extraction of multiscale temporal trends, 516–526 algorithm for extraction of trends, 521–523 generating multiscale descriptions,
construction, 154–155 reaction directionality importance, 166–167, 174 interpretation of pathway design, 150–151 synthesis algorithm extensions, 183–185 T Taguchi loss functions, as continuous quality cost models, 401–403 Temporal patterns, recognition in process trends, 492–493, 535–545 generating generalized descriptions, 538–540 inductive learning through decision trees, 541–543 learning input–output mappings, 537 pattern matching of multiscale descriptions, 540 pattern recognition with single input variable, 543–545	Variable-influence diagrams, construction, 227–232 Variable-influence pathways, characterization, 232–235 W Watson relation, 274 Wavelet dyadic transform, 512 first-order, 519 mother, selection, 531–532 orthonormal data compression through, 527–529 properties, 464–465 Wavelet decomposition, 507–526 extraction of multiscale temporal trends, 516–526 algorithm for extraction of trends, 521–523

Wavelet decomposition (Continued)
process trend generalization, 525–526
translationally invariant representation of
variables, 517–518
wavelet interval—tree of scale, 519–521
of pressure signal, 532–533
reconstruction of compressed signal from,
532, 534
theory, 508–516
decomposition and reconstruction of
functions, 511
discretization of scale, 511–513

dyadic discretization of time, 513-514 practical considerations, 515-516 resolution in time and frequency, 508, 510-511 uniform descretization of time, 514-515

Wavelet interval-tree of scale, 519-521 Wave-Net solution; see Neural networks

Z

Zero crossings, second-order, 505-506